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Abstract. Assessing teams and providing feedback on scenario-based
training typically requires human observers or scenario-specific metrics
crafted by experts, due to the complexity of general-purpose automated
tools to assess team performance. Machine learning can help infer team
performance patterns, but labeled data for a specific training scenario
is often sparse. To address this issue, the Semi-Supervised Learning for
Assessing Team Simulations (SLATS) project investigated the feasibility
of semi-supervised learning and transfer learning which leverages train-
ing data from related scenarios to classify performance on a target sce-
nario with the same metrics but a different terrain context. To this ap-
proach, we analyzed performance of teams in the first-person shooter
Team Fortress 2 (TF2). TF2 teams for the “Capture Point” mode were
classified into archetypes based on the performance of the team and the
performance of individual members of the team across the corpus: novice,
weak link, team of experts, and expert team. To investigate the feasibility
of transfer learning, we isolated matches from two of the most frequent
maps/terrains. Results found that leveraging data from the source map
always improved classification F1-scores compared to relying solely upon
target (test) map training data. The greatest benefits were observed when
target data was limited (0 to 42 target examples).While further research
is required to explore the effectiveness of transfer learning across train-
ing scenarios that are more dissimilar (e.g., different simulations, rather
than just different maps), these results offer a promising direction to
help bootstrap team assessments on new training scenarios by leveraging
data from earlier, comparable scenarios. However, efficiently calculating
reusable metrics for model features based on low-level scenario events
and logs remains a challenge that requires further research.
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1 Introduction

Assessing teams and providing feedback on scenario-based training is tradition-
ally ad-hoc, due to a lack of general-purpose automated tools to assess team



performance. In many cases, the gold standard remains live observers with a vir-
tual control panel or physical scorecard to record performance outcomes. While
standards such as xAPI have facilitated the development of general-purpose data
analytics [1], the patterns that represent expert versus novice performance can
vary substantially based on scenario difficulty or objectives. Machine learning
can help infer these patterns, but labeled data for a specific training scenario is
often sparse.

To address this issue, the Semi-Supervised Learning for Assessing Team Sim-
ulations (SLATS) project investigated the feasibility of transfer learning which
leverages training data from related scenarios to classify performance on a tar-
get scenario (i.e., same metrics but different conditions). This work aligns to
efforts such as the Army’s Synthetic Training Environment, which should enable
scenario-based team training such as battle drills to be conducted in simulated
environments with individual and team actions logged using the xAPI standard
[4]. The SLATS project was driven by three goals:
1. Classify Team Performance: Automate or semi-automate activities that

an observer-trainer might need to perform during or after a training scenario,
to enable greater opportunities for team training (e.g., reducing cost and
expertise bottlenecks). While not all abilities of a human observer or trainer
can be replicated in an automated system, sufficient data should exist in
a simulation to identify common errors that should be flagged as areas for
improvement.

2. Diagnose Performance Issues: Develop a set of key team metrics and data
views that aggregate lower-level scenario-specific assessments into actionable
and interpretable insights. The use-cases of strongest interest are to produce
metrics for: individual feedback, team feedback, scenario adaptation (for a
future simulation), and instructor review/assessment.

3. Generalized Framework: Develop a re-usable set of metrics and tools that
can be applied to assess team training in a variety of scenarios, leveraging
industry and standards for recording performance and learning events.

In this paper, we investigate the potential of transfer learning to help achieve
these goals. Analyses on an existing large corpus of team game scenarios (Team
Fortress 2) are presented. We also present context on the overall machine learning
pipeline used by SLATS, with an emphasis on how effectively these models could
facilitate diagnostic feedback and generalization to new types of simulations.
The results presented indicate that transfer learning offers an effective way to
improve assessment for scenarios in a similar training system, but that the ability
to generalize models broadly remains a challenge.

2 Background

2.1 Assessment Methodologies for Team Training

While scenario-based assessments have been explored in many educational con-
texts, assessments to support both team and individual learning remain challeng-
ing and are traditionally scenario-specific and labor intensive. Given the difficulty



to develop such computer-based assessments, they are frequently not used even
when the training itself delivered using computer-based training. For example,
large organizations such as the Army still rely primarily on live observer-trainers
to watch the exercise and manually determine feedback and after-action-review
items (e.g., sustain vs. improve priorities), limiting training feedback to times
where human experts are available. However, effective training requires many
practice opportunities; it is not feasible for a large number of teams to practice
toward expert performance when experts must facilitate each session.

Team training is substantially more complex than individual training, be-
cause learners may vary not just by skill level but also by the types of skills
they are expected to know (e.g., specialization). Research on team assessment
and performance has proposed role-based models for team behavior to address
these issues [2, 3]. There may also be differences in team versus individual perfor-
mance. Metrics development has looked at distinguishing between i) individual
tasks, ii) team tasks (outcomes), and iii) teamwork (process), in projects such
as the Surveillance Scenario Team Tutor [3] and Squad Overmatch [5].

Smith-Jentsch, Johnston, and Payne [9] break teamwork into four categories:
information exchange (domain-relevant content of communications), communi-
cation delivery (e.g., clarity, brevity, using proper terminology and language),
supporting behavior (back-up behavior to correct errors or fill gaps), and leader-
ship (adapting priorities and guidance to changes in the situation). Integrating
across these frameworks, an ideal-world team assessment would account for: a)
propagation of errors (e.g., inability to complete a task due to a teammate’s
failure), b) external influences (e.g., good process/bad outcome), and c) back-up
behavior (e.g., assigning credit for successful performance to the proper individ-
ual). The models should also distinguish between task work (e.g., performance)
vs. teamwork (e.g., coordination). These behaviors imply that assessing teams
meaningfully requires capturing both team and individual metrics, with some
structure or data-derived inferences to determine how individual metrics relate
to higher-level team processes and outcomes.

2.2 Learning: Semi-Supervised and Transfer Leaning

To address the cold start problem for scenario-based training data, we are using
a semi-supervised approach to build a classifier to detect engagement archetypes.
Given that labeled data is often hard to collect, semi-supervised methods lever-
age a small amount of labeled data to make better use of a larger set of unlabeled
data [10]. In earlier work by our group, the SMART-E project (Service for Mea-
surement and Adaptation to Real-Time Engagement) applied semi-supervised
learning for generalized, automated assessment of engagement by individual
learners. Research with SMART-E found that metrics were able to generalize
across systems for engagement [7] and that semi-supervised learning offered ad-
vantages for classifying and interpreting engagement archetypes such as dis-
tracted learners versus those racing through the content [8]. As such, a goal for
SLATS was to generalize this technique to assessing teams in scenarios.



However, while investigating semi-supervised techniques, we recognized that
our semi-supervised approach was primarily helpful for an initial scenario where
archetypes were not yet well understood. Later scenarios should be much faster to
classify accurately if transfer learning can boost new scenario assessments based
on patterns in earlier well-analyzed scenarios. However, the benefit of transfer
learning depends on the similarity between the tasks [6]. Even for different maps
or variations of scenarios with the same objectives, different team behaviors
might be more successful overall.

3 Approach

The SLATS architecture is designed to process data in stages as shown in Fig-
ure 1, such that each subsequent stage only relies on the prior stage as a data
source. Raw events and logs are first produced by a training scenario, which
are either directly recorded as xAPI statements or processed through a log-file
converter to generate xAPI records. A log-cleaner function then fixes these raw
logs to produce a second canonical xAPI log for processing (meaning that the
raw xAPI statements always exist for alternate cleaning or record checks). In
the second stage, the raw xAPI logs are analyzed to produce two types of met-
rics: direct metrics and intermediate metrics. Direct metrics require xAPI log
data to perform their calculations (e.g., number of deaths for a player that ses-
sion), while intermediate metrics can be calculated only based on other metrics
(no xAPI data needed). Metrics may be individual or team, with certain team
metrics being more likely to be intermediate (i.e., derived from the individual
players). Metrics may either be custom functions or they may be determined
by a lightweight markup file which specifies certain functions and aggregations
(e.g., average, min/max, etc.).

As shown in Stage 3, a team session vector can be specified, which specifies
the set of metrics that will be available as features for classifying team perfor-
mance. In the example analysis below, teams are classified only on team-level
metrics for easier interpretation, but this is not a requirement. A session vector
is calculated for each scenario sessions, both for labeled data (known archetypes)
and unlabeled data. In a multi-team match, each team will have its own session.

Classification occurs during the final stage. Following the approach described
for the SMART-E semi-supervised model [8], unlabeled sessions are clustered
based on their feature vectors. An alignment algorithm calculates the global
best-match between each cluster and the labeled data for each archetype. Then,
data for each cluster is assigned a candidate label based on the archetype which
aligned to it. This pooled data set includes both truly labeled data and cluster-
aligned data, which are used to train a machine learning model. Different clus-
tering algorithms and classifier types may be selected using parameters, with
Gaussian Mixture Models (GMM) clustering and Logistic Regression classifica-
tion used by default. This approach to pooling labeled and unlabeled data for the
classifiers increases accuracy versus using only unlabeled data for training and



exploratory analysis indicates benefits up to about four times as much unlabeled
data as labeled data (e.g., 20 labeled vs. 80 unlabeled).

Fig. 1. SLATS Architecture Diagram

3.1 Team Archetypes

SLATS classifies teams into “archetypes” of performance that represent their
performance level and use such classifications to areas to practice next. Un-
like a traditional 0 to 100 score, we are instead interested in the development
stage of a team from a poorly-coordinated set of novices to a highly-effective
expert team. This is important for the ability to re-use metrics across different
scenarios and simulations. For example, in one scenario it might be reasonable
for an expert team to have only 10 communicative actions, while in another,
an expert team might require 100. Moreover, metrics are not necessarily lin-
ear between archetypes: an expert gaming team might have fewer kills, because
they win decisively without an extended conflict. Manually filling in and up-
dating scenario-specific parameters and weights would be time consuming for
scenario authors. To avoid this requirement, models were leveraged to estimate
and update parameters with the goal of being able to distinguish between dif-
ferent classes of team behavior. Different archetype categories may be specified
per-system that is registered in the SLATS framework. In the current work, we
focused on classifying:

1. Expert Team: Team is effective and composed of successful individuals.
2. Team of Experts: Team members are good at individual tasks, but the team

is not successful, such as due to poor communication or coordination.
3. Weak Link: Team members are good at individual tasks effectively, but the

team is not successful, such as due to poor communication or coordination.



4. Novice: Team performances is poor, which is also reflected by lack of success
or experience of its individual members.

Typically, a ground truth data set would be established based on expert la-
beling of a small set of sessions of each category. However, in this case due to the
very large corpus of Team Fortress 2 (TF2) matches, we inferred labels based
on knowledge about team performance and the individual performance of each
team member across all their known matches. Each team (unique combination
of individuals) was characterized by its team performance and its predicted per-
formance based on a linear regression of team members’ statistics across all their
known matches (shooting, support, and survival).

Gold labels for teams were defined by the following heuristics, for the des-
ignated archetypes. While the broader SLATS project explored other archetype
categories, research on transfer learning focused on these categories.

1. Expert Team: Over 75th percentile team performance and all members over
60th percentile individual performance

2. Team of Experts: Under 75th percentile team performance despite all mem-
bers over 60th percentile individual performance.

3. Weak Link: Under 75th percentile team performance with at least one but
not all more members under 40th percentile individual performance.

4. Novice: Under 25th percentile team performance and all members under 40th
percentile individual performance

3.2 SLATS Diagnostics

While not the main focus of this paper, after a team was classified by SLATS
this result could be visualized in a web interface as shown in Figure 2. When
providing diagnostic feedback, we consider the generalizable metrics collected
and differentiate them by the individual vs. the team [9] and also the team
expertise level. Based on the anchor points of Novice and Expert Team as the
lowest and highest archetypes, respectively, a rank-order was inferred for the
next-better archetype to advance toward.

The team’s performance on each feature was shown as a bar chart. A green
bar indicates the team’s performance on a metric exceeds the typical team in
their archetype (red-dotted line) or the next-better archetype (yellow-dotted
line). A red bar indicates falling short of the typical standard for the current
archetype on that performance feature (e.g., worse than other novice teams).
As shown in the third bar “Survive”, the next-better archetype might be worse
than the current one on certain performance features. Suggested “Sustains” and
“Improves” recommendations are displayed below the bar chart. For more expert
team, areas to improve will typically be team metrics. However, for more novice
teams, areas to improve will more commonly be individual skills to practice.

3.3 Transfer Learning Analysis

To evaluate this approach, TF2 data was used as a proxy for future synthetic
battle training. Teams post log files of their matches to public online reposito-



Fig. 2. SLATS Session Diagnostics User Interface

ries and TF2 scenarios require balancing individual competencies (e.g., shooting
accuracy, taking cover) with teamwork competencies (e.g., capturing positions,
healing/support). We collected a corpus of TF2 matches using the same “mode”
(e.g., goal and rules), and classified teams in our corpus of TF2 matches into
four archetypes based on the performance of the team and the performance of
individual members of the team across the corpus as explained above.

The relationships between team and individual metrics are outlined in Fig-
ure 3, with individual metrics in orange and team metrics in blue. The feature
vector for a session had four values: Move (capture and hold points), Shoot (kill
or damage opponents), Support (heal or assist team member in a kill), and Sur-
vive (heal self, avoid damage, and avoid death). The Move metrics included each
capture point as a distinct lower-level metric, so that performance was based on
the percentage of the session each point was held and the maximum number of
points they held at the same time. Team metrics were also normalized to average
across the number of players and converting to z-scores for each team session
metrics so they would be on comparable scales.

To investigate the feasibility of transfer learning, we isolated matches from
two of the most frequent maps/terrains for a game mode called “Control Point”
(Snakewater and Process). These matches require capturing and holding a set of
control points on the map to win. In each analysis, test data was drawn solely
from the target map and we explored the use of varying mixtures of training data
from the source and target maps. The SLATS architecture was configured to use
default classifier settings (GMM and Logistic Regression), with the expectation
that if transfer learning assists simpler models it should also benefit more data-
intensive models. A stratified random sample of sessions was selected from each
map, which ensured that all archetypes were represented and that only one
session per match was selected (i.e., avoiding two sessions from same match
but different teams). A total of 319 sessions were processed to generate session
feature vectors, with 246 Snakewater (Sn) and 73 Process (Pr) sessions prepared.



Fig. 3. TF2 Metrics Aggregation Diagram

4 Results

Cross validation on entire session corpus of 319 sessions showed strong classifi-
cation results (5-fold CV; F1=0.97±0.02). Table 1 shows the average F-1 scores
for each additional 14 training sessions from either a source map or the target
map (which also provides sessions used as test data).

Target Training NPr

Source Train-
ing NSn

0 14 28 42 56

0 N/A 0.867 0.865 0.895 0.962
14 0.912 0.917 0.945 0.954 0.969
28 0.900 0.959 0.969 0.949 0.987
42 0.936 0.989 0.976 0.967 0.980
56 0.942 0.969 0.980 0.960 0.960
70 0.933 0.939 0.949 0.969 0.987
84 0.962 0.980 0.960 0.987 0.980
94 0.953 0.969 0.966 0.939 0.967

Table 1. F-1 Scores (Avg. of 5-fold CV) for Team Classification based on
Source and Target map sessions

Particularly when data is limited, including training samples from both maps
improves classification performance on the Target test sessions. These benefits
are most pronounced with fewer than 56 Target sessions (F-1 below 0.9 without
Source sessions, but 0.912-0.954 with even just 14 Source sessions). A follow-up



analysis with greater randomization of samples confirmed these results, showing
that the average best-performance tended to be about F1=.966 and that it
typically plateaued at approximately 72 samples (28 Source/42 Target).

5 Discussion

This research found that both semi-supervised learning and transfer learning can
improve classification of team performance. As shown in Figure 2 for diagnosis,
archetype analysis enabled by the semi-supervised approach is helpful because
team performance is not just on a monotonic scale but in cases where some
metrics may decrease as teams improve overall. Transfer learning also showed
benefits for overcoming the cold start problem of limited data. However, gen-
eralizable metrics pipelines were challenging to design when relying on xAPI
standards-based approaches, which likely requires more specialized research in
this area.

Transfer Effectiveness. Leveraging data from the source map always im-
proved classification f1-scores compared to relying solely upon target map train-
ing data. The greatest benefits were observed when target data was limited (0 to
42 target examples). Although it was not always the case that more source data
results in higher performance, validation data could be used to find the ideal
mixture of source and target training data. While further research is required
to explore the effectiveness of transfer learning across training scenarios that
are more dissimilar (e.g., different simulations, rather than just different maps),
these results offer a promising direction to help bootstrap team assessments on
new training scenarios by leveraging data from earlier, comparable scenarios.

Improving Metrics Pipelines. Our work is complementary to research
that improves underlying assessment metrics, such as research on multi-modal
assessment of training scenarios [11]. Since SLATS archetypes are derived from
aligning small amounts of labeled data with larger bottom-up clusters, the spe-
cific assessment metric components can be replaced with more advanced mea-
sures while following the same pipeline. In addition to more advanced metrics,
more efficient calculations of standards-based metrics are also needed. The sheer
volume of data for a highly-logged scenario (e.g., TF2) posed challenges in this
research. Attempting to apply a standards-based approach for xAPI conversion
of each low-level action (e.g., every shot fired) resulted in very large xAPI learn-
ing stores. Processing metrics on such records required optimized queries and
database caching of results, which undermined the goal of easily generalizing
team assessment across different training systems. Research groups have inves-
tigated data streams and other techniques to optimize metrics [1], which may
offer a foundation for future work on reusable metrics.

Tradeoffs of Archetypes. The SLATS approach depends on interpretable
team archetypes, which can be benchmarked against real teams rather than
heuristic rules or cutoffs. However, training experts may not know or recognize
distinct team archetypes for all training scenarios. In particular, the assumption
of an “expert” category assumes that as experts gain skills, they tend to behave



more and more similarly in comparable situations (i.e., converging on the best
approach to situations such as landing a damaged aircraft). However, expert
teams may also become more diverse in their behavior (e.g., developing their
own patterns of communication, developing teamwork patterns unique to the
strengths/weaknesses of individuals in the team). Thus, it may be difficult to
recognize expert teams in some scenarios because how they coordinate and work
together may differ, implying that additional archetypes might be required when
these distinctions are relevant for training.

6 Conclusions and Future Directions

Research on the SLATS framework indicates that transfer learning offers ad-
vantages for team assessment, particularly when data is limited and relatively
simple models are leveraged. Future research is needed however to replicate these
findings with more advanced models, particularly models that could incorporate
data streams more directly for a high volume of data. For example, new classes
of neural network transformer models may be able to directly ingest event data
streams and produce meaningful assessments.

These findings suggest that outcomes-based assessment for training scenarios
and simulations may someday be automated usefully, not just for assessing team
performance but also for tracing individual poor task performance that may
need further practice. However, the current work did not model more complex
processes or delayed consequences that may occur in other scenarios (e.g., the
appropriate skill to practice if a small mistake early-on results in a large fail-
ure later). These types of assessments are important, as simulated assessments
should distinguish between a good process versus a good (or bad) outcome when
suggesting skills to study.

Finally, research on automatically generated formative assessments and diag-
noses for training scenarios warrants further pilot studies and evaluation research
to indicate how much these insights help guide and improve learning outcomes
and study processes. Despite growing interest in automated or partially auto-
mated assessment, data on effectiveness remains limited. As such, future work
should conduct studies to identify the benefits and limits of such feedback com-
pared to control conditions such as a Wizard-of-Oz model (i.e., feedback con-
trolled by a hidden human expert) or a system without formative assessments.
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